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ABSTRACT

\

In many estimation problems, incomplete as well as complete
samples are available for Bayesian prediction. After develop-
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tions, examples are given in life testing, renewal risk pro-
cesses, life contingencies, and the problem of estimating a
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BAYESIANS LEARN WHILE WAITING

by

William S. Jewell

1. INTRODUCTION

In Bayesian prediction problems, one is interested in using observed
values of a given process to update the prior knowledge about the process
parameters, and thence to make better predictions about the process itself.
Most of the theory concerns itself either with exact calculations using so-
called natural-conjugate families of pfior and likelihood distributions [1],
or with best linear least-squares approximations, referred to in the actu-
arial literature as credibility theory [3]. However, both approaches con-
sider only the use of complete data samples.

The purpose of this paper is to show that there are many situations in
which incomplete observations also provide updating information, that is,
Bayesians can learn while waiting for the finish of the sampling experiment.
After developing the necessary theory and introducing the gamma-proportional-
hazard family of distributions most appropriate for incomplete data formula-
tions, examples are given from life testing, renewal risk processes, and life
contingency reserving. It is shown in what sense an individual life (or
cohort of similar lives) can learn about his (their) own remaining lifetime
distributions with the passage of time. The paper concludes with the prob-

lem of estimating the parameters and the defect in a defective distribution.




2 . MODR

As 1is usual in Bayesian models, we assume that x , the random life-
time of interest, has a likelihood distribution function, P(x | 8) , which
depends upon an unknown random parameter 6 which has a prior distribution
funetion, P(8) . We use P® =1 - P to denote the complementary distribu-
tion (or survival) function, and we assume that (continuous or discrete)
densities exist, denoted by p(x | 8) , p(8) etc.

The basic problem is to use observational data, sampled from the
likelihood distribution with fixed, but unknown parameter, in Bayes' law to
find the posterior-to-data distribution of the parameter, and thence to pre-
dict various moments and economic functions of the underlying lifetime pro-
cess.

To illustrate the natural way in which incomplete samples arise, we

consider a life-testing scheme in reliability [4], in which:

1. N items, all with lifetimes drawn as samples from P(x | 8) with
common and fixed 6 , are put "on test" at epochs {ti} s and re-
moved from test at epochs {ti + Ti} e - 5 AL RS I

2. C of these items (with indices in the set C) will have failed
before removal with observed lifetimes {x

mip e 1. eCy s

i =
3. The remaining lifetimes are not completely observed, since the
items are still operating at removal, so it is known only that

{;‘1 >T,} (1¢0).

Depending upon the experimental protocol, the {Ti} may be fixed in
advance, giving then a random C ; or, C may be fixed in advance for a
simultaneous test, giving a common, random time-on-test, T . Considering
for a moment that the {Ti} are fixed, and denoting the observed data by

D= {yl,yz, vees Yy b C} , where

Aol

-




(1 e0)

Xy

2.1) £

T, (1 ¢ 0C)

we can easily argue that the likelihood density of this data set, given

6 , s

(2.2) PO | &)= 1 p(x, |0 1 (T, | 0) .

ieC jéC 3
Bayes' law then gives the predictive density for continued testing of
items j ¢ C , or for future experiments on other items with the same

parameter value:

(2.3) p(x I D) = fp(x l 8) p(D I 8)p(6) .
fpwleprWM'

The ratio in square brackets is the posterior-to-data parameter density,
p(e | D) .

(2.2) is also useful for many other life testing protocols. Suppose
that all items are put on test at the same epoch; the common testing inter-
val T need not be fixed in advance, but may be a continuously-evaluated
stopping rule, a possibly random decision to stop experimenting that
depends upon the values {xl,xz, viey X. 3 C} observed up to and including
T , but not directly upon © . In this case, the likelihood includes addi-
tional terms relating to the stopping rule that cancel out of the ratio in
(2.3); the stopping rule is non-informative, and the likelihood kernel
(2.2) 1is sufficient for 6 . For instance, one could stop after the fifth

failure, or at T equal to twice the first-observed complete lifetime.




3. THE PROPORTIONAL-HAZARD FAMILY

The calculation of (2.3) can, of course, be carried out by computer
for any given prior and likelihood distributions. However, for model-
building, it is desirable to use a family of distributions in which the
calculations‘are especially tractable so that parametric behavior can be
analyzed theoretically. Unfortunately, the Koopman-Pitman-Darmois expo-
nential family of distributions so useful in credibility theory [2] has no
simple form for .

However, a special case of the exponential family, the proportional-

hazard family, [4] has useful properties:

(3.1) PS(x | 0) = e %™ ; (x| 0) = 0qx)e P | (x> 0)

where Q(x) 1is a monotone non-decreasing function (Q(0) = 0) , and

q(x) = dQ(x)/dx . We note:

1. 0Q(x) 1is the cwnulative hazard (failure) function, making q(x)
a unit- or prototype failure rate;

2., If w 1is a random variable with absolute failure rate, q(w) ,
and 6 is an integer, the original lifetime, X , has a physical

interpretation as
X = min (Gl,az, vy Ge) :

3. This family includes the exponential, Weibull, and Gumbel

(extreme-value) distributions.

The data likelihood (2.2) becomes:

P ep—

Aate




(3.2) p@ | 0 = 1 qGx[e% TP,
ieC

where TQT is a statistic,

(3.3) TQT (D) = kzq Q) = I e + ] Q) ,

i=1 ieC jéC
referred to in [4] as the total-@-on-test-statistic, a generalization of
the "total-time-on-test" concept of reliability life-testing. Note that
if item k was already age Sk (and still working) when placed on test,
then Q(Sk) should be subtracted from the TQT.

A convenient natural conjugate prior for 8 is the gamma density,

Cy-1 -0Q,

Qo(Qoe) :
(3.4) p(®) = p(8 | CpuQy) = Ty » (020)

with hyperparameters C0 : Q0 ; the usefulness of (3.4) in modelling uni-
modal densities is well known. It is easy to see that Bayes' law then
gives a posterior-to-data density of the parameter, p(6 | D) , that is

also gamma, with updated parameters:

(3.5) C0 « Co +C ; Q0 « Q0 + TQT(D) .

Furthermore, the updated means of 8 and 5-1 obey the exact credibility

formulae:

1
(3.6) (EG | 0N~ = @ - z)IEGH™ + zl[qu(ﬁ)]- :

— e et




@3.7) Bl | o= - zz)f{é‘l} - zz[!g%égl] ;

with credibility factors:

(3.8) z, = c/(c0 £CN - c/(c0 -1+C).

2

The posterior-to-data variances are aléo easily obtained:

(3.9) V(s | 0} = (E"%TTE> (€ | o112,
0
S ooy 2
(3.10) vis™ | 0} - (C——-_-lm) [E{e L9 v}] ;
0

the first terms decrease with increasing C , and so, ultimately, with
probability one, do the variances. This makes precise the difference be-
tween incomplete and complete samples; two different data sets could lead
to the same mean forecast, but we would have more "confidence" in the re-
sult with the larger number of complete samples.

The terms in square brackets in (3.6) (3.7) are the classical maximum-
likelihood estimators got from the term in square brackets in (3.2). If
the experiment gives a large number of complete observations, relative to
Co » then the Bayesian and maximum-likelihood estimators coincide. However,
for relatively incomplete tests, more weight is given the prior means,

E{6} = Cy/Qq » oF E(571) = Qy/(Cy = 1) .

Classical estimators are often obtained from Bayesian formulae when the
prior knowledge becomes "diffuse"; in our model this corresponds to keeping
E{8} or 5{5'1} fixed, and letting the corresponding variances (the prior
uncertainty) increase without limit. From (3.9) (3.10) we see this corres-

ponds to letting Co + 0 or C0 + 2 , respectively (with corresponding




adjustments in Qo) . Thus, with very uncertain prior knowledge, we get:

e giflheg [TQTC(D)] i
==1
(3.12) E(s~L | 0} = E{6 1}++Cm'g(v) y

Thus, when estimating 6 , we place "full credibility" in the maximum-
likelihood estimator, and ignore all prior information; but, when estima-
ting 5-1 » a Bayesian would always insist on keeping the prior mean as an
initial data point, because the inverse gamma is still informative.

The mixed, or predictive distribution of ¥ , averaged over all

possible‘values of © s 18

C
(3.13) Pé(x | co,Qo) = [QQI(Q0 + Q(x))] e » (x2>0)
with density

C. +1

0

(3.14) p(x | CO,QO) = (Coq(x)/Qo)[Qo/(Qo - 7 Q(x))] s
a generalization of the shifted Pareto distribution. If the prototype
failure function is Gumbel, we get exponential tails for large x in
(3.13), while if the underlying failures are Weibull, we get the "more

dangerous" algebraic tails. Posterior-to-the-data, predictive density is

of the same form, but with updated parameters.

The cumulative hazard function of the mixed distribution is:

(3.15) R(x | C5,Qp) = -1n P(x | C1uQy) = C, 1n [1 + (Q(X)/Qy] .




~v

One can show that this mixing tends to decrease the rate of failure; in
fact, the mixed population may have approximately coc.stant or decreasing
hazard rate, even with increasing q(x) .

Life testing applications are covered in more detail in [4], and the
problem of model identification of the form of Q is also considered. We

turn now to applications of these ideas in risk theory.




4. RENEWAL PROCESSES

In one model of the collective risk process, claims are assumed to
follow a renewal process. If, during an exposure interval T , C events
(accidents, claims, equipment failures, etc.) are observed, this means
there are C complete interval samples {xi} , and the final interval-in-

c

progress, T - 2 X
i=1

4" If all intervals are sampled from (3.1) with fixed

6 , the parameter updating becomes:

L]

(4.1) C0+CO+C;Q0+Q0+§Q(xi)+Q(T-§xi>.
i=1 i=1
Note that not only the random number of events in (0,T] , but also the
actual lengths of the intervals provide information in the general case.
An important special case in risk processes occurs when Q(x) = x ,
leading to exponentially-distributed intervals, and a Poisson counting pro-

cess, for each 6 . However, here
(4.2) Q0<-Q0+Zx1+(T~in)-QO+T,

so we conclude that the Poisson process is special in that only the number
of events in (0,T] , not the epochs of events, provides predictive informa-
tion!

If the claim amount (severity) distribution is independent of 6 (the
usual assumption), then the above is sufficient to predict total losses
from the compound distribution; in the contrary case, additional modelling

and updating are necessary.

— ek -—
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5. INDIVIDUAL LEARNING ABOUT REMAINING LIFE

We turn now to the interesting question of whether or not a Bayesian
can learn about his own remaining lifetime distribution function (rldf).

For a mixed population with average tail distribution p¢

c
(5.1) Pri{x>T+u| x>7) e« B2 _ pc,
c T
P™(T)
represents the fraction of those individual components alive (operating) at
age T which will survive until age T + u .

However, for a single life component with known parameter 6 , the

appropriate rldf is:

c
(5.2) rr{i>r+u|i>r;e}-P§_T+“l°)-p;(u|e).
PE(T | o)
If we have to estimate this single life behavior as averaged over the
population (i.e., without Bayesian learning), we get the prior expected
rldf:

(5.3) E{p;(u | 6)} - f"cc@ tul® yae,
P(T | )
which is clearly not identical with (5.1).
Now let us adopt the Bayesian point of view, and estimate the remain-
ing life of a single individual who has lived to age T ; since he is still
alive, we have the single datum D = {x > T} , which must update the

parameter density to:

< c
(5.4) p(6 | Dy = =BT 1 O)p(® _ P (rcl 8)p(e)
P(T | 0)p(s)de il
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So the Bayesian-updated rldf will be

c c
. E {rE | o) .fr Tiu o) i@t ,,
8|D e+ P°(T)

which is exactly the same as the population rldf in (5.1)! Stated another
way, a single life (or component) camnot, on the average, gather any addi-
tional information about his i‘emaining lifetime distribution by the mere
passage of time, other than that given for the population as a whole--even
though he can learn about his parameter! A suri)rising, but satisfying

result.




S B o
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6. COHORT LEARNING ABOUT REMAINING LIFE

This does not mean, however, that geveral incomplete samples cannot
provide information about other lifetimes with the same 6 , nor that a
group of lives with the same 6 cannot learn from the passage of time.
Consider a cohort of N lives with the same parameter which are put "on

test" at the same epoch. From Section 2, with T, = T for all i , we see

i
that the data D = {x, =T (e C) ; C} changes (5.5) to:

E. (P | 8} =
8|0

(6.1) % N-C-1
P(T | 8) mplx, | 8)p(e)

P¢ (D)

de ,

f?‘('r+u|e)

where learning would clearly take place.

For the proportional-hazard family,

(6.2) P;(u | o) = e~0fQT+W-AD]

If the prior at T =0 1is gamma with hyperparameters C_, and Q0 » the

0
posterior-to-data density of 6 at T is gamma with hyperparameters

C,+C and Qo + (N - C)Q(T) + 2 Q(xi) » giving finally the special cohort-

0
experienced remaining-lifetime distribution function:

Qp + O - QAU + ] Qlx,)
Qy + (N = 1-0)Q(M) + ] Qx,) + Q(T + u)

(6.3) E§|D{P;(u | é)} >

It is easy to see how learning vanishes when N =1 and C=20 .

e s ot 44 80 ot ey T L A AT T
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7. LIFE CONTINGENCIES AND RESERVES

To apply the results above, consider that we are determining the net
single premium for a continuous life annuity of $1/year, at force of inter-
est & , for an individual aged x . Given 6 , this would be (we omit the

usual overbar notation):
7.1 e (0) = f U | 0)au = f (~Sum[QUrh) Q) ]

Let us suppose that the prior on 6 1is gamma with hyperparameters C1 s Q1
at the moment of underwriting (age x). The population-average annuity fair

premium is then:

by £ <t s
(7.2) 0 €t = ot [0, + Q| au,
where
(7.3) Qx(u) = Q(x + u) - Q(x)

is the prototype cumulative failure function for the remaining life, begin-
ning at age x .

Now, suppose we have insured a cohort of N 1lives aged x , all of
whom have the same parameter, and let us follow the cohort for t addi-
tional years. During this time the data provided by the C expirations at
additional ages {ti} s together with t! fact that N - C 1lives are still

in existence at age x + t , would update the hyperparameters to:

(7.4) €y =Cp+C; Q) = + (N =0)Q(t) + 1§c Q. (t,) .
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Although it is too late to change the premium, this additional knowl-
edge could be useful in adaptive modification of the reserves on the N - C
outstanding policies; for a single~premium annuity of $1/year still out-

standing at age x + t , the correct adaptive reserve would be:
(7.5) V) = a,, (C,,0,(t)) .

We remind the reader that 02 and Q2(t) will be random outcomes, depend-
ing upon actual cchort experience during ages (x,x + t] . Only when there
is a éingle incomplete life under observation (C2 = C1 : Qz(t) =

Q1 + Qx(t)) will no learning take place, and the reserves will follow the

classic result for an average member of the mixed population:

aha P:(t + u)
(7.6) e ™ fe T du = ax...t(cl,Q1 + Qx(t)) v
P_(t)
x
A similar development could be given in terms of the net single pre-
mium for a life assurance of $1, at force of interest & , payable at the

instant of death of an individual now aged x ,
-8u
7.7) A_(0) -fe P, (u | 8)du .

The appropriate formulae follow from the previous results by the universal
relation Ax =] - 6‘: .

It is of interest to follow through the actual stochastic behavior of
a "learning reserve" of the type (7.5). First of all, we note that adap-
tive annuity reserves do not decrease as quickly as the corresponding

st ? for small t and C = 0 , wvhich can be seen from:

- -
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da (C »Q (t))
xtt "t 2% 2
dt = 88 (C0Q () - 1
C.q(x + t)
(7.8) 2 £
g [0 - Oag €0y

5 (N -C- 1)ax+t<c2 + 1 H Qz(t))}

as compared with the well-known classical result

da C,q(x + t)
x+t 2
(7.9) It 6ax+t -1+ Q1 - Qx(t) & e *

The term in square brackets is, of course,«che failure rate at x + t for
the mixed population in the proportional-hazard family, Z.e., the deriva-
tive of (3.15). When the first and subsequent deaths occur, there is an
instantaneous drop in (7.5), since 02 increases by unity, but Qz(t) is
continuous. In general, if fewer (more) lives than expected terminate
during (x,x + t] , the reserves on the remaining lives are larger (smaller)
than usual, since this indicates that the value of 6 1s smaller (larger)
than average for this cohort. A complementary effect occurs for life assur-
ance learning reserves.

It should be mentioned that a gamma-mixed proportional-hazard model
should be used with care for human mortality. 1If, for example, the proto-
type failure rate is assumed to follow Makeham's law, q(t) = A + Beclt , We
find that the mixed hazard rate (the derivative of (3.15)) is asymptotically
constant, due to the failure-rate-decreasing properties of mixing! One
would have to assume that, given 6 , individuals follow a much stronger
"wear-out" (say, Gumbel), in order to obtain a population Makeham-type law.
It is interesting to speculate as to whether or not this occurs for closely-
matched humans, where 6 would have to include health, genetic, and environ-

mental effects.

e
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8. DEFECTIVE DISTRIBUTIONS

Component and human lives are finite, with probability one; however,
defective distributions arise in a variety of other operational situatioms.
Consider, for example, the estimation of the time it takes for a number of
requests for bids, mailed survey responses, etc., to be returned. Some
responses are received rather quickly; in other cases, an answer is never
received.

A reasonable model for this situation would add an unknown defect

parameter, ¢ , to the usual lifetime distribution, as follows:

(8.1) P%(x | 8,0) = ¢+ (1 - ¢)P%(x | @) ; p(x | 6,0) = (1 - &)p(x | @) .

¢ 1s then the probability that the lifetime is "infinite."
Under the life testing scheme of Section 2, the likelihood of the data

set D becomes:

8.2) p@ |0, =(Ma-0° 1 px, | &) 1 [o+ a-orca, | o] .
(C) we s 3¢C [ 3 ]

Assuming all the intervals T, have common value T , we find the posterior-

]
to-data density of 6 and ¢ by a binomial expansion:

p(6,6 | D) =

N-C-j

(8.3) N=C /v _
! (N c) p(6,4)

v 3

da-o% 1 e | 0ra | o
3=0

ieC

where K 1s a normalizing constant to make f f p(8,9 | D)dédd = 1 . To
illustrate the calculations further, assume that the "honest" part of
(8.1), P (x | 8) , 1s from the proportional-hazard family (3.1), with
gamma prior on 6 (3.4). For simplicity, assume ¢ is, a priori, inde-

pendent of 6 , and has a beta prior density:

———
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a -1

=1 o ( )bo-l
(8.4) p(®) =p(4 | a,b) =B (a,b)e " \1-9 ©0O<¢<1).

B(ao,bo) is the beta function, I‘(ao)I‘(bo)/I‘(ao + bo) . After straight-

forward calculations with these special forms, we find the mixed beta-

gamma :
p(6,¢ I D) =
(8.5) N-C
jgo L@PG | a,+3, b, +N=-4)pe | ¢y +C, Q)+ 1T, D) ,
where
(8.6) TQT,(0) = ] Q(x,) + (N -C - 1)Q(T) ,
3 ieC i

and the mixing probabilities are given by:

8.7) 1

D) =K - B(a° +3, bo + N - 3j) Q0 + TQT (D)]

] ]

where, again, K 1is a normalizing factor to make Z HJ =1 . It is impor-
tant to note that, posterior-to-data, the estimates of 6 and ¢ are
dependent, unless all of the observations are complete. For estimating the
mean defect, we have

N-C a, +J
(8.8) E(o | D} = JZO 1, @) a +b +N|’

where we recognize the term in square brackets as the mean of ¢ , given
only that we observe j defects out of N trials, For N=1 and no

failure:

o e

L, S S o — e S N——

wd -
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(o
a (a_ + 1)[1+Q(T)/Q] 04
. o o 0 0
(8.9) E{¢ | D} = 2 ¥ b T 1 [ ]Co ,
a |1+ Q('r)/Q0 L

which shows clearly how the mean defect increases from its original esti-
mate of aO/(ao + bo) towards (ao + 1)/(a° + bo +1) as T+ « with no
failure. Of course, if the lifetime ever terminates, E{¢ | D} jumps to

(b° + 1)/(a° + b° + 1) . Other mixing models are given in [4].
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